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Abstract—Test case prioritization can effectively reduce the 
cost of regression testing by executing test cases with respect to 
their contributions to testing goals. Previous research has proved 
that the Bayesian Networks based technique which uses source 
code change information, software quality metrics and test 
coverage data has better performance than those methods merely 
depending on only one of the items above. Although the former 
Bayesian Networks based Test Case Prioritization (BNTCP) 
focusing on assessing the fault detection capability of each test case 
can utilize all three items above, it still has a deficiency that ignores 
the similarity between test cases. For mitigating this problem, this 
paper proposes a hybrid regression test case prioritization 
technique which aims to achieve better prioritization by 
incorporating code coverage based clustering approach with 
BNTCP to depress the impact of those similar test cases having 
common code coverage. Experiments on two Java projects with 
mutation faults and one Java project with hand-seeded faults have 
been conducted to evaluate the fault detection performance of the 
proposed approach against Additional Greedy approach, 
Bayesian Networks based approach (BNTCP), Bayesian Networks 
based approach with feedback (BNA) and code coverage based 
clustering approach. The experimental results showed that the 
proposed approach is promising. 

Keywords—Regression testing; Test case prioritization (TCP); 
Clustering; Bayesian Network (BN) 

I. INTRODUCTION 

Regression testing is an important but time consuming test 
activity [1]. Previous research has shown that the time cost of 
regression testing would account for more than one third of the 
total time for software maintenance [2]. One of the major 
concerns in regression testing is to continue improving the rate 
of fault detection while reducing the cost. In the last few decades, 
researchers have developed many techniques to make regression 
testing more efficient. Some of them select a subset of the test 
suite developed for an earlier version of a software system such 
as test case selection and test suite minimization techniques. 
These methods successfully reduce the cost of regression testing 
but lose a little fault detection capability because some test cases 
have been discarded during the process. Unlike these two kinds 
of approaches, test case prioritization can lower the testing cost 
by executing test cases according to their contributions to testing 
goals [3] without discarding any test cases. Using this approach, 
test engineers can adjust the length of the execution sequence of 
test cases according to their budget. 

To date, researchers have paid more and more attention to 
regression test case prioritization problem and proposed various 
prioritization techniques [3-10]. Most of them only depend on 
the code coverage information. Mirarab et al. believed that 
more information would improve the performance of TCP and 
constructed Bayesian Networks with source code change 
information, software quality metrics and test coverage data to 
prioritize the test cases [4]. The empirical studies demonstrated 
that their approach had better fault detection rate than those 
depending on code coverage only. However, they ignored the 
similarity between test cases which share common coverage. As 
a result, re-running similar test cases may waste time and it is 
important to identify and decrease the duplicate execution of 
similar test cases.  

To illustrate this problem, considering a program with a test 
suite containing three test cases which cover five classes of the 
program shown in Table I and the corresponding fault coverage 
matrix shown in Table II, BNTCP may output 1-2-3 as the 
“optimal” solution. Whereas, the optimal test case ordering for 
this case is 1-3-2 if the evaluation criterion is APFD (Average 
Percentage Faults Detected) [3]. BNTCP does not work well in 
this case mainly because it prioritizes test cases according to 
their failure probability which represents fault revealing ability, 
but test cases with common properties (e.g., having similar code 
coverage) may have similar fault detection ability [5]. 
Consequently, those test cases with similar code coverage have 
similar failure probability and thus have similar priority which 
may reduce the rate of fault detection. Therefore, it is necessary 
to find a better technique which can overcome this weakness of 
BNTCP and get better performance in terms of fault detection. 

TABLE I.  TEST COVERAGE MATRIX 

Test 
Case 

Class 
1 2 3 4 5 

1 X X X X  
2  X X X  
3     X 

TABLE II.  FAULT COVERAGE MATRIX 

Test 
Case 

Fault 
1 2 3 4 5 

1 X X X X  
2  X X X  
3     X 
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This paper proposes a new hybrid regression test case 
prioritization technique which incorporates code coverage based 
clustering method with BN based approach for better 
prioritization. There are two main steps in the new hybrid 
technique. First, clustering methods are employed to classify all 
test cases into groups. The test cases in each group share similar 
code coverage. Second, the clustered test cases are prioritized 
according to their failure probability by BN based approach. 
Thus, the hybrid technique will not only make effective use of 
source code modification information, software quality metrics 
and test coverage data but also reduce the effects of similarity 
between test cases.  

There are two main contributions of this work: (i) To the best 
of our knowledge, the work is the first one which integrates the 
clustering approach to BNTCP. (ii) We use three programs 
jtopas, xml-security and ant to conduct experiments on our 
technique and compare it with some related techniques. The 
empirical results show that our technique is promising. 

The rest of this paper is organized as follows. Section II 
reviews some related work. Section III describes the new 
approach for TCP. Section IV presents the empirical study. 
Section V concludes and gives ideas for future work. 

II. RELATED WORK 

Test case prioritization aims to reduce the cost of regression 
testing by processing important test cases at an early stage. 
Rothermel et al. applied Greedy strategy and Additional Greedy 
strategy to TCP [3]. Li et al. applied two search algorithms 
including Genetic algorithm and Hill Climbing algorithm to 
TCP for faster coverage [6]. Jiang et al. proposed a family of 
coverage-based adaptive random testing techniques for TCP [7]. 
Similar to [7], Fang et al. proposed a similarity-based TCP 
technique based on farthest-first ordered sequence [8]. 

Recently, some researchers used clustering approaches to 
improve the performance of TCP. Arafeen et al. proposed a 
clustering approach for TCP that utilized requirements 
information [9]. Carlson et al. presented a coverage-based 
clustering approach for TCP [5], which was more relevant to our 
work. Their approach firstly clustered test cases in terms of code 
coverage similarity, secondly prioritized test cases within each 
cluster using several prioritization techniques that utilized code 
coverage information, a code complexity metric and fault 
detection history information respectively, and finally generated 
the complete ordered test suite by selecting test cases from each 
cluster using a round robin method. To investigate the 
effectiveness of their approach, they performed empirical 
studies on Microsoft Dynamics Ax with real bugs. Their results 
indicated that clustering based approaches performed better than 
approaches without clustering for fault detection. 

Above techniques generally depended on one single source 
of information. However, one can imply that techniques taking 
advantages of more data usually have much better performance. 
Mei et al. proposed a multi-level coverage model to improve the 
cost-effectiveness of TCP techniques [10]. Mirarab and 
Tahvildari proposed a prioritization approach based on BN 
which integrated source code change information, software 
quality metrics and test coverage data into one unified model [4]. 
Their approach employed a BN and prioritized test cases 

according to their failure probability. They also evaluated the 
performance of their approach using APFD measure on Apache 
Ant with hand-seeded faults. Their experimental results showed 
that their approach achieved higher APFD values than coverage 
based approaches.  

 Despite the effectiveness of the BN based approach, there 
remains an issue with this approach. As described in Section I, 
the BN based approach assigns similar priorities to those test 
cases with similar code coverage patterns. In this way, the rate 
of fault detection may decrease because test cases with similar 
code coverage areas may cover similar faults and test cases 
covering the same faults make contributions to fault detection 
only once. Thus, a better test case prioritization technique is 
needed to overcome the weakness of the BN based technique 
and to get better performance in terms of fault detection. In this 
paper, a hybrid technique for TCP is presented which utilizes a 
clustering approach before constructing BNs to overcome the 
weakness of BN based technique. 

III. CLUSTERING – BN BASED APPROACH FOR TCP 

In this section, we describe the proposed Clustering – BN 
based technique for TCP which enhances the BN based 
approach by clustering test cases before constructing Bayesian 
Networks. Figure 1 shows an overview of the proposed 
technique. Our technique contains two main phases. First, test 
cases are clustered based on their code coverage information. 
Second, a BN is built to prioritize clustered test cases according 
to the results of probabilistic inference. The following two 
subsections describe each phase in detail. 

A. Code coverage based clustering 

In this step, the agglomerative hierarchical clustering 
algorithm [11] is employed to cluster test cases. This clustering 
algorithm uses a bottom-up strategy and groups test cases step 
by step as follows: First, each test case is treated as a cluster. 
Second, two closest clusters are merged into one cluster 
according to the similarity among clusters. Third, the pair-wise 
similarities between clusters are updated while the new 
generated cluster is regarded as one single cluster. Finally, the 
previous two steps are repeated until all the test cases are in one 
cluster or some terminal conditions are satisfied. 

The Euclidean distance on method-level coverage matrix is 
calculated to represent the distance between test cases. The 
similarity between two clusters is determined by average linkage 
strategy. The distance between one test case and a cluster is 
calculated by averaging distances between the test case and each 
test case of the cluster. Then take an average of distances 
between each test case of one cluster and the other cluster. 

 This algorithm outputs a hierarchical clustering tree that 
contains all the clustering information from the bottom up. This 
feature provides an opportunity to adjust the number of clusters 
which improves the flexibility of the proposed prioritization 
technique. 

B. BN based prioritization 

The BN model for TCP designed in [4] is hired in this part. 

1) Training process. To present the training process of the 
BN model, consider a BN containing m C nodes, m correspond- 
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Fig. 1. Overview of our test case prioritization framework. 

ing F nodes and n T nodes, as shown in Table III. For each C 
node, the prior probability ܲሺܿ௜ሻ is estimated by evaluating the 
differences of class ݅ between version v and v-1. For each F 
node, ܲሺ ௜݂|ܿ௜ሻ  and ܲሺ ௜݂|൓ܿ௜ሻ  are estimated using two 
univariate fault-proneness models [12] based on CA (Afferent 
Coupling) and CBO (Coupling Between Object classes) 
respectively. CA is a software quality metric that measures the 
number of classes that depend on a specific class (i.e. uses its 
methods and/or fields) [13]. CBO is an object-oriented software 
quality metric of Chidamber and Kemerer (CK) metrics suite 
[14]. It measures the number of classes to which a given class 
is coupled (i.e. it uses their methods and/or fields) [14]. For each 
T node, using the Noisy-OR assumption [15] which assumes 
that the relations between a test case and its covered classes are 
independent from each other, we only need to estimate the 
ܲ൫ݐ௜ห ௝݂൯. In addition, the leak, which represents the probability 
of a test case being failed even though all the classes covered 
by it are sound, is set as 0.01 in this paper. 

2) Probabilistic inference. To estimate the failure 
probabilities of test cases, the probabilistic inference needs to 
be performed on the BN that has been built.  

3) Prioritizing clustered test cases. To complete 
prioritization of test cases, first, test cases within each cluster 
are ranked according to their failure probability. To do so, for 
each cluster, test cases in this cluster are sorted in descending 
order of failure probability. Second, test cases are selected from 
each cluster to generate the final execution sequence of test 
cases. In this step, we visit each cluster using a round robin 
method. In each iteration, the first test case in each cluster (if 
any) is chosen and added into a temporary set (make sure that 
this temporary set is empty before each iteration). At the same 
time, the test cases in the temporary set are prioritized with the 
descending order of failure probability and removed from their 
clusters. Repeating this iteration process until all the test cases 
have been added to the final execution sequence (the output). 
Figure 2 shows an example process of prioritizing clustered test  

TABLE III.  PESUDO CODE FOR ESTIMATING THE CPTS 

Estimating CPTs 
ߙ ൅ ଵߜ ൑ 1
ߚ ൅ ଶߜ ≪ ߙ ൅ ଵߜ ൑ 1

1 for each ݅ ሺ1 ൑ ݅ ൑ ݉ሻ do  
2 ܲሺܿ௜ሻ ൌ 1 െ  ௜ሻݏݏሺ݈ܿܽݕݐ݅ݎ݈ܽ݅݉݅ݏ

3 ܲሺ ௜݂|ܿ௜ሻ ൌ
ߙ ௜ሻݏݏሺ݈ܿܽܣܥ
ሻܣܥሺݔܽ݉

൅  ଵߜ

4 ܲሺ ௜݂|൓ܿ௜ሻ ൌ
ߚ ௜ሻݏݏሺ݈ܱܿܽܤܥ
ሻܱܤܥሺݔܽ݉

൅  ଶߜ

5 for each ݆ ሺ1 ൑ ݆ ൑ ݊ሻ do 
6 if ܿݒ݋൫ݐ௝, ௜൯ݏݏ݈ܽܿ ൐ 0 then 
7 ܲ൫ݐ௝ห ௜݂൯ ൌ ,௝ݐሺݒ݋ܿ  ௜ሻݏݏ݈ܽܿ
8 end if 
9 end for 

10 end for 
11  
12 define function ݕݐ݅ݎ݈ܽ݅݉݅ݏሺ݈ܿܽݏݏ௜ሻ begin 
13 return the similarity of class ݅ between version v and v-1 
14 end  
15 define function ܣܥሺ݈ܿܽݏݏ௜ሻ begin 
16       return the CA value of class ݅ 
17 end 
18 define function ܱܤܥሺ݈ܿܽݏݏ௜ሻ begin 
19       return the CBO value of class ݅ 
20 end 
21 define function ܿݒ݋൫ݐ௝,  ௜൯ beginݏݏ݈ܽܿ
22       return the percentage of class ݅ covered by test case ݆ 
23 end 

 
cases. In this example, there are fifteen test cases (T1-T15) 
which have been divided into five clusters. There are also some 
two-tuples made up with a test case and its failure probability.  

IV. EMPIRICAL STUDY 

In order to evaluate the performance of our proposed 
technique for fault detection, several empirical experiments have 
been conducted and they will be described in this section. 

A. Research Question 

In our experimental studies, we investigate the following 
research question. 

 
Ordered test 

cases 

Clustering test cases 

Method-level 
coverage matrix 

Clusters of 
test cases 

Building Bayesian Network 

Class-level 
coverage matrix 

Source code 
change info

Software quality 
metrics 

BN model 

Probabilistic inference 

Fail prob. of 
test cases 

Prioritizing clustered test cases 
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Fig. 2. An example of prioritizing clustered test cases. 

How is the performance of the new proposed technique 
compared to some former techniques for fault detection? 

B. Experiment Setup 

1) Prioritization techniques. In our empirical experiments, 
we compare the proposed Clustering – BN based approach 
(CBN) with Additional Greedy approach (ADD), BN based 
approach (BN), BN based approach with feedback (BNA) [16] 
and method-level coverage based clustering approach (MCC). 

2) Target objects, Test suites and Faults. Two Java 
programs (xml-security and jtopas) with mutation faults and 
one Java program (ant) with hand-seeded faults are employed 
to evaluate the fault detection performance of the proposed 
technique with some related techniques. These three open 
source programs are available on the website of Software-
artifact Infrastructure Repository (SIR) [17]. All these 
programs are assembled with their corresponding JUnit test 
suites. 

To fully evaluate the performance of the proposed technique 
for fault detection, there should be two types of faults: mutation 
faults and hand-seeded faults in the object programs. Hand-
seeded faults and the corresponding fault matrices are already 
available in SIR and the fault matrices are constructed using test 
suites at the test-class level. But only ant is employed for the 
evaluation with hand-seeded faults because xml-security and 
jtopas have only a few versions and hand-seeded faults 
compared to ant. Each involved prioritization technique is 
performed only once on each version of ant which contains all 
available hand-seeded faults. Table IV details the size, the 
number of test-class level test cases and available hand-seeded 
faults for each version of ant. 

To evaluate with mutation faults, the Major Mutation 
Framework [18] is used to get mutants for xml-security and 
jtopas. For each version of these two programs, a mutant pool is 
generated to produce twenty mutant groups. Each mutant group 
is made up with five unused and randomly selected mutants that 
can be killed by test cases in the test suite from the mutant pool. 
The Major Mutation Framework also provides a mutation 
analysis back-end that can help us to produce mutation fault 
matrices for each mutant group. Fault matrices using test suites 

at the test-method level are generated. Next, the mutated 
versions for each version will be achieved by adding one group 
of mutants to the corresponding version. Each involved 
prioritization technique is performed on each mutated version. 
The details for each version of xml-security and jtopas are listed 
in Table V. 

Note that the software quality metrics are generated from the 
mutated versions and the change analysis is also performed 
between the mutated versions and the corresponding previous 
versions. 

3) Data collection. In order to perform our proposed 
prioritization technique, method-level coverage information for 
clustering test cases and class-level coverage data, source code 
change information, software quality metrics for building BNs 
need to be collected. 

a) Collecting coverage information. “Cobertura” [19] for 
Maven is hired to collect the coverage information of the object 
programs at method-level and class-level in this paper. In a 
method-level coverage matrix, each element represents whether 
a method in which one or more lines of code are executed by a 
test case or not, where “1” represents executed but “0” means 
not. But in a class-level coverage matrix, each element is a 
number between 0 and 1, representing the percentage of a class 
covered by a test case. The interface classes are not considered. 

b) Change analysis. To perform change analysis between 
a version and its corresponding previous version, a tool named 
“Sandmark” [20] is used here. It is mainly developed for 
watermarking but it also provides a code differencing function 
that compares the byte code of Java files and outputs a score of 
similarity between 0 and 1. 

c) Gathering quality metrics. Quality metrics of each 
class are collected by “ckjm” [21]. This tool calculates 
Chidamber and Kemerer (CK) object-oriented metrics, CA 
(Afferent Coupling) and NPM (Number of Public Methods) by 
processing the byte code of compiled Java files. 

4) Evaluation metric. APFD is employed to evaluate the 
performance of the involved techniques. Higher APFD values 
mean faster fault detection rates. 

5) Parameter settings. Four constants ߙ ଵߜ , ଶߜ , ߛሺ	ߛ , ൌ
ሺߙ ൅ ߚଵሻ/ሺߜ ൅  ଶሻሻ that are used to estimate CPTs of F nodesߜ
in the BN model are set as 0.8, 0.1, 0.1, 8 respectively. stp, a 
parameter used in the BNA model that controls the number of 
added test cases in each iteration, is set as 1. k, the number of 
clusters generated by the agglomerative hierarchical clustering 
algorithm, is set as 5. 

TABLE IV.  THE DETAILS FOR VERSIONS OF ANT 

Object KLoC
Number 

of Classes
Number of 
Methods 

Class-
level 
Tests 

Hand-
seeded 
Faults

ant_v1 25.8 229 2511 28 1 
ant_v2 39.7 343 3836 34 1 
ant_v3 39.8 343 3845 52 2 
ant_v4 61.9 533 5684 52 4 
ant_v5 63.5 537 5802 101 4 
ant_v6 63.6 537 5808 104 1 
ant_v7 80.4 627 7520 105 6 

Prioritized Clusters of test cases (after the first step) 
Cluster1: (T7, 0.4)-(T3, 0.35)-(T9, 0.25) 
Cluster2: (T2, 0.32)-(T6, 0.32)-(T11, 0.28) 
Cluster3: (T5, 0.25)-(T8, 0.23)-(T12, 0.2)-(T4, 0.2) 
Cluster4: (T15, 0.18)-(T13, 0.15)-(T1, 0.15) 
Cluster5: (T10, 0.1)-(T14, 0.05) 
Iteration 1 
{(T7, 0.4), (T2, 0.32), (T5, 0.25), (T15, 0.18), (T10, 0.1)} 
→ T7-T2-T5-T15-T10 
Iteration 2 
{(T3, 0.35), (T6, 0.32), (T8, 0.23), (T13, 0.15), (T14, 0.05)} 
→ T3-T6-T8-T13-T14 
Iteration 3 
{(T9, 0.25), (T11, 0.28), (T12, 0.2), (T1, 0.15)} → T11-T9-T12-T1 
Iteration 4 
{(T4, 0.2)} → T4 
Ordered test cases (after the second step) 
T7-T2-T5-T15-T10-T3-T6-T8-T13-T14-T11-T9-T12-T1-T4
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TABLE V.  THE DETAILS FOR VERSIONS OF XML-SECURITY AND JTOPAS 

Object KLoC 
Number 

of Classes
Number of 
Methods 

Method-
level 
Tests 

jtopas_v1 1.89 19 284 126 
jtopas_v2 2.03 21 302 128 
jtopas _v3 5.36 50 748 209 

xml-security_v1 18.3 179 1627 92 
xml-security _v2 19.0 180 1629 94 
xml-security _v3 16.9 145 1398 84 

C. Results and Analysis 

First, we compare the APFD values of the five involved 
techniques obtained by the experiments conducted on xml-
security and jtopas with mutation faults. The boxplots of the 
evaluation metric APFD for jtopas and xml-security are shown 
in Figure 3 and Figure 4 respectively. Each subfigure indicates 
the results of one version. The last subfigure in each figure is a 
summary of boxplot for all versions. Figure 3 and Figure 4 figure 
out that our proposed approach (CBN) is performed better than 
the other four approaches including ADD, BN, BNA and MCC. 
And when compared to jtopas, the differences between CBN and 
the other four approaches are more significant for xml-security. 
Comparing the performances of the other four approaches, we 
also find that ADD and MCC perform better than BN and BNA 
on jtopas while they perform worse than BN and BNA on xml-
security. This indicates that these four approaches are not stable 
compared to our approach CBN.  

To investigate the statistical significance of the differences 
between the five involved techniques, a Friedman test [22] at 
0.05 significance level is implemented. The Friedman test is a 
non-parametric statistical test that can be used to compare group 
means for statistical significance. The Friedman test rather than 
Fisher’s ANOVA (Analysis of Variance) is chosen because the 
distributions of each data set obtained by different techniques  

TABLE VI.  FRIEDMAN TEST FOR XML-SECURITY AND JTOPAS WITH 
MUTATION FAULTS 

 
Sum of 
Squares

df 
Mean 

Square 
Chi-sq Significance

Between 
Groups

305.73 4 76.4323 123.16 .000 

Within 
Groups

885.77 476 1.8609   

Total 1191.5 599    

TABLE VII.  MULTIPLE COMPARISON (LSD) FOR XML-SECURITY AND 
JTOPAS WITH MUTATION FAULTS 

Technique 
(x) 

Technique 
(y) 

lower 
confidence 

limit 

Mean 
Difference 

(x - y) 

upper 
confidence 

limit 

ADD 

BN 
BNA 
MCC 
CBN 

-0.1090 
-0.6757 
-0.3548 
-2.1423 

0.4458 
-0.1208 
0.2000 

-1.5875(*) 

1.0007 
0.4340 
0.7548 
-1.0327 

BN 
BNA 
MCC 
CBN 

-1.1215 
-0.8007 
-2.5882 

-0.5667(*) 
-0.2458 

-2.0333(*) 

-0.0118 
0.3090 
-1.4785 

BNA 
MCC 
CBN 

-0.2340 
-2.0215 

0.3208 
-1.4667(*) 

0.8757 
-0.9118 

MCC CBN -2.3423 -1.7875(*) -1.2327 
(*) The mean difference is significant at 0.05 level. 

TABLE VIII.  APFD MEAN OF THE INVESTIGATED TECHNIQUES FOR ANT 

 ADD BN BNA MCC CBN 

All versions 83.3447 81.1909 83.689 84.6392 86.9237
Versions  

3, 4, 5 and 7 
77.7426 76.5227 77.7956 78.0849 81.3616

are not normal and the variances are not all equal. In this case, 
the “null hypothesis” is that the means of the APFD values for 
all the techniques are equal. The significance value (p-value) 
will be calculated to decide acceptance of the “null hypothesis”. 

  
                  (a) jtopas_v1                                           (b) jtopas_v2                                         (c) jtopas_v3                                         (d) jtopas_all 

Fig. 3. Boxplots of APFD for jtopas program. 

 
                  (a) xml-security_v1                                (b) xml-security_v2                                (c) xml-security_v3                               (d) xml-security_all 

Fig. 4. Boxplots of APFD for xml-security program. 
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If the p-value is less than 0.05, the “null hypothesis” should be 
rejected. Otherwise, the “null hypothesis” should be accepted. 
The smaller the p-value (< 0.05) is, the stronger the evidence 
will be against the “null hypothesis”. The results of the test are 
exhibited in Table VI. 

The results of the Friedman test show that the means of the 
APFD values for the five techniques are not all equal. This 
means that the performances of these techniques are 
significantly different. In order to locate the differences, a LSD 
(Least Significant Difference) test at 0.05 significance level is 
launched. It is a multiple comparison method. The results are 
presented in Table VII. If the interval between lower confidence 
limit and the upper confidence limit does not include zero, it is 
believable that the mean difference between the two techniques 
is statistically significant. 

With regarding the APFD values, the results of the LSD test 
show that the mean differences between our proposed technique 
CBN and the other four techniques are significant. Moreover, 
Table VII presents that the mean differences between CBN and 
the other four techniques are all negative numbers which means 
that the mean of CBN is larger than the means of the other four 
techniques. Therefore, it is obvious that CBN significantly 
outperforms the other four techniques for jtopas and xml- 
security, for fault detection. 

Second, we compare the means of APFD values of the five 
involved techniques obtained by the experiments conducted on 
ant with hand-seeded faults, as shown in Table VIII. The table 
shows that our proposed technique CBN performs better than the 
other four techniques. 

In conclusion, in all the experiments, our proposed technique 
CBN performs significantly better than the other four techniques 
including ADD, BN, BNA and MCC for fault detection. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper, a new regression test case prioritization 
technique which incorporates Bayesian Networks based 
approach and code coverage based clustering approach into one 
framework to improve the fault detection capability has been 
proposed. This approach is able to enhance the BN based 
approach and it shows effectiveness in regression test case 
prioritization problem by clustering test cases before 
constructing Bayesian Networks. As a result, the proposed 
approach can achieve full coverage of faults at a faster rate than 
the BN based approach. After introducing the details of the 
proposed approach, an experimental study to evaluate the 
performance of the proposed approach in terms of fault detection 
has been conducted. The proposed approach has exhibited better 
performance than four existing approaches in the empirical 
study.  

For the future work, we think that the performance of the 
proposed approach should be evaluated with more programs and 
real faults. This will elucidate whether it can maintain the good 
performance with the practical regression testing process. In 
addition, more metrics on the relationship between test cases and 
programs will be emphasized to ensure that the new fault will be 
exposed as early as possible.  
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