
A Clustering – Bayesian Network Based Approach
for Test Case Prioritization

Xiaobin Zhao, Zan Wang*, Xiangyu Fan
School of Computer Software

Tianjin University
Tianjin, China

{zhaoxiaobin, wangzan, fxy}@tju.edu.cn

Zhenhua Wang
American Electric Power

Gahanna, OH, USA
zhw.powersystem@gmail.com

Abstract—Test case prioritization can effectively reduce the
cost of regression testing by executing test cases with respect to
their contributions to testing goals. Previous research has proved
that the Bayesian Networks based technique which uses source
code change information, software quality metrics and test
coverage data has better performance than those methods merely
depending on only one of the items above. Although the former
Bayesian Networks based Test Case Prioritization (BNTCP)
focusing on assessing the fault detection capability of each test case
can utilize all three items above, it still has a deficiency that ignores
the similarity between test cases. For mitigating this problem, this
paper proposes a hybrid regression test case prioritization
technique which aims to achieve better prioritization by
incorporating code coverage based clustering approach with
BNTCP to depress the impact of those similar test cases having
common code coverage. Experiments on two Java projects with
mutation faults and one Java project with hand-seeded faults have
been conducted to evaluate the fault detection performance of the
proposed approach against Additional Greedy approach,
Bayesian Networks based approach (BNTCP), Bayesian Networks
based approach with feedback (BNA) and code coverage based
clustering approach. The experimental results showed that the
proposed approach is promising.

Keywords—Regression testing; Test case prioritization (TCP);
Clustering; Bayesian Network (BN)

I. INTRODUCTION

Regression testing is an important but time consuming test
activity [1]. Previous research has shown that the time cost of
regression testing would account for more than one third of the
total time for software maintenance [2]. One of the major
concerns in regression testing is to continue improving the rate
of fault detection while reducing the cost. In the last few decades,
researchers have developed many techniques to make regression
testing more efficient. Some of them select a subset of the test
suite developed for an earlier version of a software system such
as test case selection and test suite minimization techniques.
These methods successfully reduce the cost of regression testing
but lose a little fault detection capability because some test cases
have been discarded during the process. Unlike these two kinds
of approaches, test case prioritization can lower the testing cost
by executing test cases according to their contributions to testing
goals [3] without discarding any test cases. Using this approach,
test engineers can adjust the length of the execution sequence of
test cases according to their budget.

To date, researchers have paid more and more attention to
regression test case prioritization problem and proposed various
prioritization techniques [3-10]. Most of them only depend on
the code coverage information. Mirarab et al. believed that
more information would improve the performance of TCP and
constructed Bayesian Networks with source code change
information, software quality metrics and test coverage data to
prioritize the test cases [4]. The empirical studies demonstrated
that their approach had better fault detection rate than those
depending on code coverage only. However, they ignored the
similarity between test cases which share common coverage. As
a result, re-running similar test cases may waste time and it is
important to identify and decrease the duplicate execution of
similar test cases.

To illustrate this problem, considering a program with a test
suite containing three test cases which cover five classes of the
program shown in Table I and the corresponding fault coverage
matrix shown in Table II, BNTCP may output 1-2-3 as the
“optimal” solution. Whereas, the optimal test case ordering for
this case is 1-3-2 if the evaluation criterion is APFD (Average
Percentage Faults Detected) [3]. BNTCP does not work well in
this case mainly because it prioritizes test cases according to
their failure probability which represents fault revealing ability,
but test cases with common properties (e.g., having similar code
coverage) may have similar fault detection ability [5].
Consequently, those test cases with similar code coverage have
similar failure probability and thus have similar priority which
may reduce the rate of fault detection. Therefore, it is necessary
to find a better technique which can overcome this weakness of
BNTCP and get better performance in terms of fault detection.

TABLE I. TEST COVERAGE MATRIX

Test
Case

Class
1 2 3 4 5

1 X X X X
2 X X X
3 X

TABLE II. FAULT COVERAGE MATRIX

Test
Case

Fault
1 2 3 4 5

1 X X X X
2 X X X
3 X

* corresponding author.

2015 IEEE 39th Annual International Computers, Software & Applications Conference

0730-3157/15 $31.00 © 2015 IEEE

DOI 10.1109/COMPSAC.2015.154

542

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 23,2023 at 03:05:39 UTC from IEEE Xplore. Restrictions apply.

This paper proposes a new hybrid regression test case
prioritization technique which incorporates code coverage based
clustering method with BN based approach for better
prioritization. There are two main steps in the new hybrid
technique. First, clustering methods are employed to classify all
test cases into groups. The test cases in each group share similar
code coverage. Second, the clustered test cases are prioritized
according to their failure probability by BN based approach.
Thus, the hybrid technique will not only make effective use of
source code modification information, software quality metrics
and test coverage data but also reduce the effects of similarity
between test cases.

There are two main contributions of this work: (i) To the best
of our knowledge, the work is the first one which integrates the
clustering approach to BNTCP. (ii) We use three programs
jtopas, xml-security and ant to conduct experiments on our
technique and compare it with some related techniques. The
empirical results show that our technique is promising.

The rest of this paper is organized as follows. Section II
reviews some related work. Section III describes the new
approach for TCP. Section IV presents the empirical study.
Section V concludes and gives ideas for future work.

II. RELATED WORK

Test case prioritization aims to reduce the cost of regression
testing by processing important test cases at an early stage.
Rothermel et al. applied Greedy strategy and Additional Greedy
strategy to TCP [3]. Li et al. applied two search algorithms
including Genetic algorithm and Hill Climbing algorithm to
TCP for faster coverage [6]. Jiang et al. proposed a family of
coverage-based adaptive random testing techniques for TCP [7].
Similar to [7], Fang et al. proposed a similarity-based TCP
technique based on farthest-first ordered sequence [8].

Recently, some researchers used clustering approaches to
improve the performance of TCP. Arafeen et al. proposed a
clustering approach for TCP that utilized requirements
information [9]. Carlson et al. presented a coverage-based
clustering approach for TCP [5], which was more relevant to our
work. Their approach firstly clustered test cases in terms of code
coverage similarity, secondly prioritized test cases within each
cluster using several prioritization techniques that utilized code
coverage information, a code complexity metric and fault
detection history information respectively, and finally generated
the complete ordered test suite by selecting test cases from each
cluster using a round robin method. To investigate the
effectiveness of their approach, they performed empirical
studies on Microsoft Dynamics Ax with real bugs. Their results
indicated that clustering based approaches performed better than
approaches without clustering for fault detection.

Above techniques generally depended on one single source
of information. However, one can imply that techniques taking
advantages of more data usually have much better performance.
Mei et al. proposed a multi-level coverage model to improve the
cost-effectiveness of TCP techniques [10]. Mirarab and
Tahvildari proposed a prioritization approach based on BN
which integrated source code change information, software
quality metrics and test coverage data into one unified model [4].
Their approach employed a BN and prioritized test cases

according to their failure probability. They also evaluated the
performance of their approach using APFD measure on Apache
Ant with hand-seeded faults. Their experimental results showed
that their approach achieved higher APFD values than coverage
based approaches.

 Despite the effectiveness of the BN based approach, there
remains an issue with this approach. As described in Section I,
the BN based approach assigns similar priorities to those test
cases with similar code coverage patterns. In this way, the rate
of fault detection may decrease because test cases with similar
code coverage areas may cover similar faults and test cases
covering the same faults make contributions to fault detection
only once. Thus, a better test case prioritization technique is
needed to overcome the weakness of the BN based technique
and to get better performance in terms of fault detection. In this
paper, a hybrid technique for TCP is presented which utilizes a
clustering approach before constructing BNs to overcome the
weakness of BN based technique.

III. CLUSTERING – BN BASED APPROACH FOR TCP

In this section, we describe the proposed Clustering – BN
based technique for TCP which enhances the BN based
approach by clustering test cases before constructing Bayesian
Networks. Figure 1 shows an overview of the proposed
technique. Our technique contains two main phases. First, test
cases are clustered based on their code coverage information.
Second, a BN is built to prioritize clustered test cases according
to the results of probabilistic inference. The following two
subsections describe each phase in detail.

A. Code coverage based clustering

In this step, the agglomerative hierarchical clustering
algorithm [11] is employed to cluster test cases. This clustering
algorithm uses a bottom-up strategy and groups test cases step
by step as follows: First, each test case is treated as a cluster.
Second, two closest clusters are merged into one cluster
according to the similarity among clusters. Third, the pair-wise
similarities between clusters are updated while the new
generated cluster is regarded as one single cluster. Finally, the
previous two steps are repeated until all the test cases are in one
cluster or some terminal conditions are satisfied.

The Euclidean distance on method-level coverage matrix is
calculated to represent the distance between test cases. The
similarity between two clusters is determined by average linkage
strategy. The distance between one test case and a cluster is
calculated by averaging distances between the test case and each
test case of the cluster. Then take an average of distances
between each test case of one cluster and the other cluster.

 This algorithm outputs a hierarchical clustering tree that
contains all the clustering information from the bottom up. This
feature provides an opportunity to adjust the number of clusters
which improves the flexibility of the proposed prioritization
technique.

B. BN based prioritization

The BN model for TCP designed in [4] is hired in this part.

1) Training process. To present the training process of the
BN model, consider a BN containing m C nodes, m correspond-

543

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 23,2023 at 03:05:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Overview of our test case prioritization framework.

ing F nodes and n T nodes, as shown in Table III. For each C
node, the prior probability ܲሺܿ௜ሻ is estimated by evaluating the
differences of class ݅ between version v and v-1. For each F
node, ܲሺ ௜݂|ܿ௜ሻ and ܲሺ ௜݂|൓ܿ௜ሻ are estimated using two
univariate fault-proneness models [12] based on CA (Afferent
Coupling) and CBO (Coupling Between Object classes)
respectively. CA is a software quality metric that measures the
number of classes that depend on a specific class (i.e. uses its
methods and/or fields) [13]. CBO is an object-oriented software
quality metric of Chidamber and Kemerer (CK) metrics suite
[14]. It measures the number of classes to which a given class
is coupled (i.e. it uses their methods and/or fields) [14]. For each
T node, using the Noisy-OR assumption [15] which assumes
that the relations between a test case and its covered classes are
independent from each other, we only need to estimate the
ܲ൫ݐ௜ห ௝݂൯. In addition, the leak, which represents the probability
of a test case being failed even though all the classes covered
by it are sound, is set as 0.01 in this paper.

2) Probabilistic inference. To estimate the failure
probabilities of test cases, the probabilistic inference needs to
be performed on the BN that has been built.

3) Prioritizing clustered test cases. To complete
prioritization of test cases, first, test cases within each cluster
are ranked according to their failure probability. To do so, for
each cluster, test cases in this cluster are sorted in descending
order of failure probability. Second, test cases are selected from
each cluster to generate the final execution sequence of test
cases. In this step, we visit each cluster using a round robin
method. In each iteration, the first test case in each cluster (if
any) is chosen and added into a temporary set (make sure that
this temporary set is empty before each iteration). At the same
time, the test cases in the temporary set are prioritized with the
descending order of failure probability and removed from their
clusters. Repeating this iteration process until all the test cases
have been added to the final execution sequence (the output).
Figure 2 shows an example process of prioritizing clustered test

TABLE III. PESUDO CODE FOR ESTIMATING THE CPTS

Estimating CPTs
ߙ ൅ ଵߜ ൑ 1
ߚ ൅ ଶߜ ≪ ߙ ൅ ଵߜ ൑ 1

1 for each ݅ ሺ1 ൑ ݅ ൑ ݉ሻ do
2 ܲሺܿ௜ሻ ൌ 1 െ ௜ሻݏݏሺ݈ܿܽݕݐ݅ݎ݈ܽ݅݉݅ݏ

3 ܲሺ ௜݂|ܿ௜ሻ ൌ
ߙ ௜ሻݏݏሺ݈ܿܽܣܥ
ሻܣܥሺݔܽ݉

൅ ଵߜ

4 ܲሺ ௜݂|൓ܿ௜ሻ ൌ
ߚ ௜ሻݏݏሺ݈ܱܿܽܤܥ
ሻܱܤܥሺݔܽ݉

൅ ଶߜ

5 for each ݆ ሺ1 ൑ ݆ ൑ ݊ሻ do
6 if ܿݒ݋൫ݐ௝, ௜൯ݏݏ݈ܽܿ ൐ 0 then
7 ܲ൫ݐ௝ห ௜݂൯ ൌ ,௝ݐሺݒ݋ܿ ௜ሻݏݏ݈ܽܿ
8 end if
9 end for

10 end for
11
12 define function ݕݐ݅ݎ݈ܽ݅݉݅ݏሺ݈ܿܽݏݏ௜ሻ begin
13 return the similarity of class ݅ between version v and v-1
14 end
15 define function ܣܥሺ݈ܿܽݏݏ௜ሻ begin
16 return the CA value of class ݅
17 end
18 define function ܱܤܥሺ݈ܿܽݏݏ௜ሻ begin
19 return the CBO value of class ݅
20 end
21 define function ܿݒ݋൫ݐ௝, ௜൯ beginݏݏ݈ܽܿ
22 return the percentage of class ݅ covered by test case ݆
23 end

cases. In this example, there are fifteen test cases (T1-T15)
which have been divided into five clusters. There are also some
two-tuples made up with a test case and its failure probability.

IV. EMPIRICAL STUDY

In order to evaluate the performance of our proposed
technique for fault detection, several empirical experiments have
been conducted and they will be described in this section.

A. Research Question

In our experimental studies, we investigate the following
research question.

Ordered test

cases

Clustering test cases

Method-level
coverage matrix

Clusters of
test cases

Building Bayesian Network

Class-level
coverage matrix

Source code
change info

Software quality
metrics

BN model

Probabilistic inference

Fail prob. of
test cases

Prioritizing clustered test cases

544

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 23,2023 at 03:05:39 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. An example of prioritizing clustered test cases.

How is the performance of the new proposed technique
compared to some former techniques for fault detection?

B. Experiment Setup

1) Prioritization techniques. In our empirical experiments,
we compare the proposed Clustering – BN based approach
(CBN) with Additional Greedy approach (ADD), BN based
approach (BN), BN based approach with feedback (BNA) [16]
and method-level coverage based clustering approach (MCC).

2) Target objects, Test suites and Faults. Two Java
programs (xml-security and jtopas) with mutation faults and
one Java program (ant) with hand-seeded faults are employed
to evaluate the fault detection performance of the proposed
technique with some related techniques. These three open
source programs are available on the website of Software-
artifact Infrastructure Repository (SIR) [17]. All these
programs are assembled with their corresponding JUnit test
suites.

To fully evaluate the performance of the proposed technique
for fault detection, there should be two types of faults: mutation
faults and hand-seeded faults in the object programs. Hand-
seeded faults and the corresponding fault matrices are already
available in SIR and the fault matrices are constructed using test
suites at the test-class level. But only ant is employed for the
evaluation with hand-seeded faults because xml-security and
jtopas have only a few versions and hand-seeded faults
compared to ant. Each involved prioritization technique is
performed only once on each version of ant which contains all
available hand-seeded faults. Table IV details the size, the
number of test-class level test cases and available hand-seeded
faults for each version of ant.

To evaluate with mutation faults, the Major Mutation
Framework [18] is used to get mutants for xml-security and
jtopas. For each version of these two programs, a mutant pool is
generated to produce twenty mutant groups. Each mutant group
is made up with five unused and randomly selected mutants that
can be killed by test cases in the test suite from the mutant pool.
The Major Mutation Framework also provides a mutation
analysis back-end that can help us to produce mutation fault
matrices for each mutant group. Fault matrices using test suites

at the test-method level are generated. Next, the mutated
versions for each version will be achieved by adding one group
of mutants to the corresponding version. Each involved
prioritization technique is performed on each mutated version.
The details for each version of xml-security and jtopas are listed
in Table V.

Note that the software quality metrics are generated from the
mutated versions and the change analysis is also performed
between the mutated versions and the corresponding previous
versions.

3) Data collection. In order to perform our proposed
prioritization technique, method-level coverage information for
clustering test cases and class-level coverage data, source code
change information, software quality metrics for building BNs
need to be collected.

a) Collecting coverage information. “Cobertura” [19] for
Maven is hired to collect the coverage information of the object
programs at method-level and class-level in this paper. In a
method-level coverage matrix, each element represents whether
a method in which one or more lines of code are executed by a
test case or not, where “1” represents executed but “0” means
not. But in a class-level coverage matrix, each element is a
number between 0 and 1, representing the percentage of a class
covered by a test case. The interface classes are not considered.

b) Change analysis. To perform change analysis between
a version and its corresponding previous version, a tool named
“Sandmark” [20] is used here. It is mainly developed for
watermarking but it also provides a code differencing function
that compares the byte code of Java files and outputs a score of
similarity between 0 and 1.

c) Gathering quality metrics. Quality metrics of each
class are collected by “ckjm” [21]. This tool calculates
Chidamber and Kemerer (CK) object-oriented metrics, CA
(Afferent Coupling) and NPM (Number of Public Methods) by
processing the byte code of compiled Java files.

4) Evaluation metric. APFD is employed to evaluate the
performance of the involved techniques. Higher APFD values
mean faster fault detection rates.

5) Parameter settings. Four constants ߙ ଵߜ , ଶߜ , ߛሺ	ߛ , ൌ
ሺߙ ൅ ߚଵሻ/ሺߜ ൅ ଶሻሻ that are used to estimate CPTs of F nodesߜ
in the BN model are set as 0.8, 0.1, 0.1, 8 respectively. stp, a
parameter used in the BNA model that controls the number of
added test cases in each iteration, is set as 1. k, the number of
clusters generated by the agglomerative hierarchical clustering
algorithm, is set as 5.

TABLE IV. THE DETAILS FOR VERSIONS OF ANT

Object KLoC
Number

of Classes
Number of
Methods

Class-
level
Tests

Hand-
seeded
Faults

ant_v1 25.8 229 2511 28 1
ant_v2 39.7 343 3836 34 1
ant_v3 39.8 343 3845 52 2
ant_v4 61.9 533 5684 52 4
ant_v5 63.5 537 5802 101 4
ant_v6 63.6 537 5808 104 1
ant_v7 80.4 627 7520 105 6

Prioritized Clusters of test cases (after the first step)
Cluster1: (T7, 0.4)-(T3, 0.35)-(T9, 0.25)
Cluster2: (T2, 0.32)-(T6, 0.32)-(T11, 0.28)
Cluster3: (T5, 0.25)-(T8, 0.23)-(T12, 0.2)-(T4, 0.2)
Cluster4: (T15, 0.18)-(T13, 0.15)-(T1, 0.15)
Cluster5: (T10, 0.1)-(T14, 0.05)
Iteration 1
{(T7, 0.4), (T2, 0.32), (T5, 0.25), (T15, 0.18), (T10, 0.1)}
→ T7-T2-T5-T15-T10
Iteration 2
{(T3, 0.35), (T6, 0.32), (T8, 0.23), (T13, 0.15), (T14, 0.05)}
→ T3-T6-T8-T13-T14
Iteration 3
{(T9, 0.25), (T11, 0.28), (T12, 0.2), (T1, 0.15)} → T11-T9-T12-T1
Iteration 4
{(T4, 0.2)} → T4
Ordered test cases (after the second step)
T7-T2-T5-T15-T10-T3-T6-T8-T13-T14-T11-T9-T12-T1-T4

545

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 23,2023 at 03:05:39 UTC from IEEE Xplore. Restrictions apply.

TABLE V. THE DETAILS FOR VERSIONS OF XML-SECURITY AND JTOPAS

Object KLoC
Number

of Classes
Number of
Methods

Method-
level
Tests

jtopas_v1 1.89 19 284 126
jtopas_v2 2.03 21 302 128
jtopas _v3 5.36 50 748 209

xml-security_v1 18.3 179 1627 92
xml-security _v2 19.0 180 1629 94
xml-security _v3 16.9 145 1398 84

C. Results and Analysis

First, we compare the APFD values of the five involved
techniques obtained by the experiments conducted on xml-
security and jtopas with mutation faults. The boxplots of the
evaluation metric APFD for jtopas and xml-security are shown
in Figure 3 and Figure 4 respectively. Each subfigure indicates
the results of one version. The last subfigure in each figure is a
summary of boxplot for all versions. Figure 3 and Figure 4 figure
out that our proposed approach (CBN) is performed better than
the other four approaches including ADD, BN, BNA and MCC.
And when compared to jtopas, the differences between CBN and
the other four approaches are more significant for xml-security.
Comparing the performances of the other four approaches, we
also find that ADD and MCC perform better than BN and BNA
on jtopas while they perform worse than BN and BNA on xml-
security. This indicates that these four approaches are not stable
compared to our approach CBN.

To investigate the statistical significance of the differences
between the five involved techniques, a Friedman test [22] at
0.05 significance level is implemented. The Friedman test is a
non-parametric statistical test that can be used to compare group
means for statistical significance. The Friedman test rather than
Fisher’s ANOVA (Analysis of Variance) is chosen because the
distributions of each data set obtained by different techniques

TABLE VI. FRIEDMAN TEST FOR XML-SECURITY AND JTOPAS WITH
MUTATION FAULTS

Sum of
Squares

df
Mean

Square
Chi-sq Significance

Between
Groups

305.73 4 76.4323 123.16 .000

Within
Groups

885.77 476 1.8609

Total 1191.5 599

TABLE VII. MULTIPLE COMPARISON (LSD) FOR XML-SECURITY AND
JTOPAS WITH MUTATION FAULTS

Technique
(x)

Technique
(y)

lower
confidence

limit

Mean
Difference

(x - y)

upper
confidence

limit

ADD

BN
BNA
MCC
CBN

-0.1090
-0.6757
-0.3548
-2.1423

0.4458
-0.1208
0.2000

-1.5875(*)

1.0007
0.4340
0.7548
-1.0327

BN
BNA
MCC
CBN

-1.1215
-0.8007
-2.5882

-0.5667(*)
-0.2458

-2.0333(*)

-0.0118
0.3090
-1.4785

BNA
MCC
CBN

-0.2340
-2.0215

0.3208
-1.4667(*)

0.8757
-0.9118

MCC CBN -2.3423 -1.7875(*) -1.2327
(*) The mean difference is significant at 0.05 level.

TABLE VIII. APFD MEAN OF THE INVESTIGATED TECHNIQUES FOR ANT

 ADD BN BNA MCC CBN

All versions 83.3447 81.1909 83.689 84.6392 86.9237
Versions

3, 4, 5 and 7
77.7426 76.5227 77.7956 78.0849 81.3616

are not normal and the variances are not all equal. In this case,
the “null hypothesis” is that the means of the APFD values for
all the techniques are equal. The significance value (p-value)
will be calculated to decide acceptance of the “null hypothesis”.

 (a) jtopas_v1 (b) jtopas_v2 (c) jtopas_v3 (d) jtopas_all

Fig. 3. Boxplots of APFD for jtopas program.

 (a) xml-security_v1 (b) xml-security_v2 (c) xml-security_v3 (d) xml-security_all

Fig. 4. Boxplots of APFD for xml-security program.

55

60

65

70

75

80

85

90

95

100

ADD BN BNA MCC CBN

40

50

60

70

80

90

100

ADD BN BNA MCC CBN

65

70

75

80

85

90

95

100

ADD BN BNA MCC CBN

40

50

60

70

80

90

100

ADD BN BNA MCC CBN

50

55

60

65

70

75

80

85

90

95

100

ADD BN BNA MCC CBN
50

55

60

65

70

75

80

85

90

95

100

ADD BN BNA MCC CBN
60

65

70

75

80

85

90

95

ADD BN BNA MCC CBN

50

55

60

65

70

75

80

85

90

95

100

ADD BN BNA MCC CBN

546

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 23,2023 at 03:05:39 UTC from IEEE Xplore. Restrictions apply.

If the p-value is less than 0.05, the “null hypothesis” should be
rejected. Otherwise, the “null hypothesis” should be accepted.
The smaller the p-value (< 0.05) is, the stronger the evidence
will be against the “null hypothesis”. The results of the test are
exhibited in Table VI.

The results of the Friedman test show that the means of the
APFD values for the five techniques are not all equal. This
means that the performances of these techniques are
significantly different. In order to locate the differences, a LSD
(Least Significant Difference) test at 0.05 significance level is
launched. It is a multiple comparison method. The results are
presented in Table VII. If the interval between lower confidence
limit and the upper confidence limit does not include zero, it is
believable that the mean difference between the two techniques
is statistically significant.

With regarding the APFD values, the results of the LSD test
show that the mean differences between our proposed technique
CBN and the other four techniques are significant. Moreover,
Table VII presents that the mean differences between CBN and
the other four techniques are all negative numbers which means
that the mean of CBN is larger than the means of the other four
techniques. Therefore, it is obvious that CBN significantly
outperforms the other four techniques for jtopas and xml-
security, for fault detection.

Second, we compare the means of APFD values of the five
involved techniques obtained by the experiments conducted on
ant with hand-seeded faults, as shown in Table VIII. The table
shows that our proposed technique CBN performs better than the
other four techniques.

In conclusion, in all the experiments, our proposed technique
CBN performs significantly better than the other four techniques
including ADD, BN, BNA and MCC for fault detection.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a new regression test case prioritization
technique which incorporates Bayesian Networks based
approach and code coverage based clustering approach into one
framework to improve the fault detection capability has been
proposed. This approach is able to enhance the BN based
approach and it shows effectiveness in regression test case
prioritization problem by clustering test cases before
constructing Bayesian Networks. As a result, the proposed
approach can achieve full coverage of faults at a faster rate than
the BN based approach. After introducing the details of the
proposed approach, an experimental study to evaluate the
performance of the proposed approach in terms of fault detection
has been conducted. The proposed approach has exhibited better
performance than four existing approaches in the empirical
study.

For the future work, we think that the performance of the
proposed approach should be evaluated with more programs and
real faults. This will elucidate whether it can maintain the good
performance with the practical regression testing process. In
addition, more metrics on the relationship between test cases and
programs will be emphasized to ensure that the new fault will be
exposed as early as possible.

ACKNOWLEDGEMENT

This work is partly supported by a project from National
Natural Science Foundation of China, with project number
‘61202030’. The authors also thank anonymous reviewers for
their constructive comments.

REFERENCES
[1] H.K.N. Leung, L.J. White, “Insights into regression testing.” In:

Proceedings on IEEE International Conference of Software Maintenance,
pp. 60-69, 1989.

[2] S. Schach, “Software engineering.” Boston, MA: Aksen Associates, 1992.

[3] G. Rothermel, Roland H. Untch, Chengyun Chu, and M. J. Harrold,
“Prioritizing Test Cases for Regression Testing.” IEEE Transactions on
Software Engineering, vol. 27, no. 10, pp. 929-948, 2001.

[4] Siavash Mirarab and Ladan Tahvildari, “A Prioritization Approach for
Software Test Cases Based on Bayesian Networks.” Fundamental
Approaches to Software Engineering, pp. 276-290, 2007.

[5] Ryan Carlson, Hyunsook Do and Anne Denton, “A clustering approach
to improving test case prioritization: An industrial case study.” 27th IEEE
International Conference on Software Maintenance, pp. 382-391, 2011.

[6] Zheng Li, Mark Harman and Robert M. Hierons, “Search Algorithms for
Regression Test Case Prioritization.” IEEE Transactions on Software
Engineering, vol. 33, no. 4, pp. 225-237, 2007.

[7] Bo Jiang, Zhenyu Zhang, W. K. Chan, T. H. Tse, “Adaptive Random Test
Case Prioritization.” IEEE/ACM International Conference on Automated
Software Engineering Proceedings, pp. 233-244, 2009.

[8] Chunrong Fang, Zhenyu Chen, Kun Wu, Zhihong Zhao, “Similarity-
based test case prioritization using ordered sequences of program entities.”
Software Quality Journal, vol. 22, no. 2, pp. 335-361, 2014.

[9] Md. J. Arafeen, Hyunsook Do, “Test Case Prioritization Using
Requirements-Based Clustering.” 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, pp. 312-
321, 2013.

[10] Lijun Mei, Yan Cai, Changjiang Jia, et al. “A Subsumption Hierarchy of
Test Case Prioritization for Composite Services.” To appear in IEEE
Transactions on Services Computing (TSC).

[11] P. Tan, M. Steinbach, and V. Kumar, “Introduction to Data Mining.”
Addison-Wesley, 2006.

[12] L. Briand, J. Wüst, “Empirical studies of quality models in object-oriented
systems.” Advances in Computers, vol. 56, pp. 97-166, 2002.

[13] Robert Cecil Martin, “Agile Software Development: Principles, Patterns
and Practices.” Pearson Education, 2002.

[14] S.R. Chidamber, C.F. Kemerer, “Towards a metrics suite for object
oriented design.” In: Proceedings of the Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems, Languages, and
Applications, pp. 197-211, 1991.

[15] J. Pearl, “Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference.” Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1988.

[16] S. Mirarab and L. Tahvildari, “An empirical study on Bayesian Network-
based approach for test case prioritization.” International Conference on
Software Testing, Verification and Validation, 278-287, 2008.

[17] H. Do, S. Elbaum, and G. Rothermel, “Supporting controlled
experimentation with testing techniques: An infrastructure and its
potential impact,” ESE, vol. 10, no. 4, pp. 405-435, 2005.

[18] R. Just, “The Major mutation framework: Efficient and Scalable Mutation
Analysis for Java,” in Proceedings of the International Symposium on
Software Testing and Analysis, 2014.

[19] Cobertura, available at http://cobertura.github.io/cobertura/.

[20] C. Collberg, G. Myles, and M. Stepp, “An empirical study of Java
bytecode programs.” Software: Practice and Experience, vol. 37, no. 6,
pp. 581-641, 2007.

[21] Ckjm, available at http://www.spinellis.gr/sw/ckjm/.

[22] M. Friedman, “The use of ranks to avoid the assumption of normality
implicit in the analysis of variance.” Journal of the American Statistical
Association, vol. 32, no. 200, pp. 675-701, 1937.

547

Authorized licensed use limited to: TIANJIN UNIVERSITY. Downloaded on September 23,2023 at 03:05:39 UTC from IEEE Xplore. Restrictions apply.

